-
1 векторный формфактор
-
2 аксиально-векторный формфактор
Makarov: axial-vector form factorУниверсальный русско-английский словарь > аксиально-векторный формфактор
-
3 векторный формфактор
Makarov: vector form factorУниверсальный русско-английский словарь > векторный формфактор
-
4 аксиально-векторный формфактор
Русско-английский физический словарь > аксиально-векторный формфактор
-
5 Определенные артикли перед существительными, которые снабжены ссылками
The differential problem (1) can be reduced to the form (2)The asymptotic formula (1) follows from the above lemmaThe differential equation (1) can be solved numericallyWhat is needed in the final result is a simple bound on quantities of the form (1)The inequality (1) (артикль можно опустить) shows that $a>b$The bound (estimate) (2) is not quite as good as the bound (estimate) (1)If the norm of $A$ satisfies the restriction (1), then by the estimate (2) this term is less than unitySince the spectral radius of $A$ belongs to the region (1), this iterative method converges for any initial guessesThe array (1) is called the matrix representing the linear transformation of $f$It should be noted that the approximate inequality (1) bounds only the absolute error in $x$The inequality (1) shows that...The second step in our analysis is to substitute the forms (1) and (2) into this equation and simplify it by dropping higher-order termsFor small $ze$ the approximation (1) is very good indeedA matrix of the form (1), in which some eigenvalue appears in more than one block, is called a derogatory matrixThe relation between limits and norms is suggested by the equivalence (1)For this reason the matrix norm (1) is seldom encountered in the literatureTo establish the inequality (1) from the definition (2)Our conclusion agrees with the estimate (1)The characterization is established in almost the same way as the results of Theorem 1, except that the relations (1) and (2) take place in the eigenvalue-eigenvector relation...This vector satisfies the differential equation (1)The Euclidean vector norm (2) satisfies the properties (1)The bound (1) ensures only that these elements are small compared with the largest element of $A$There is some terminology associated with the system (1) and the matrix equation (2)A unique solution expressible in the form (1) restricts the dimensions of $A$The factorization (1) is called the $LU$-factorizationIt is very uncommon for the condition (1) to be violatedThe relation (1) guarantees that the computed solution gives very small residualThis conclusion follows from the assumptions (1) and (2)The factor (1) introduced in relation (2) is now equal to 2The inequalities (1) are still adequateWe use this result without explicitly referring to the restriction (1)Русско-английский словарь по прикладной математике и механике > Определенные артикли перед существительными, которые снабжены ссылками
См. также в других словарях:
Factor analysis — is a statistical method used to describe variability among observed, correlated variables in terms of a potentially lower number of unobserved, uncorrelated variables called factors. In other words, it is possible, for example, that variations in … Wikipedia
Vector space — This article is about linear (vector) spaces. For the structure in incidence geometry, see Linear space (geometry). Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is… … Wikipedia
Vector calculus identities — The following identities are important in vector calculus:ingle operators (summary)This section explicitly lists what some symbols mean for clarity.DivergenceDivergence of a vector fieldFor a vector field mathbf{v} , divergence is generally… … Wikipedia
Comparison of vector algebra and geometric algebra — Vector algebra and geometric algebra are alternative approaches to providing additional algebraic structures on vector spaces, with geometric interpretations, particularly vector fields in multivariable calculus and applications in mathematical… … Wikipedia
Vector processor — A vector processor, or array processor, is a CPU design where the instruction set includes operations that can perform mathematical operations on multiple data elements simultaneously. This is in contrast to a scalar processor which handles one… … Wikipedia
Factor of automorphy — In mathematics, the notion of factor of automorphy arises for a group acting on a complex analytic manifold. Suppose a group G acts on a complex analytic manifold X. Then, G also acts on the space of holomorphic functions from X to the complex… … Wikipedia
Structure factor — In physics, in the area of crystallography, the structure factor of a crystal is a mathematical description of how the crystal scatters incident radiation. The structure factor is a particularly useful tool in the interpretation of interference… … Wikipedia
Euclidean vector — This article is about the vectors mainly used in physics and engineering to represent directed quantities. For mathematical vectors in general, see Vector (mathematics and physics). For other uses, see vector. Illustration of a vector … Wikipedia
Symplectic vector space — In mathematics, a symplectic vector space is a vector space V equipped with a nondegenerate, skew symmetric, bilinear form omega; called the symplectic form. Explicitly, a symplectic form is a bilinear form omega; : V times; V rarr; R which is *… … Wikipedia
Automorphic form — In mathematics, the general notion of automorphic form is the extension to analytic functions, perhaps of several complex variables, of the theory of modular forms. It is in terms of a Lie group G, to generalise the groups SL2(R) or PSL2 (R) of… … Wikipedia
Laplace–Runge–Lenz vector — Throughout this article, vectors and their magnitudes are indicated by boldface and italic type, respectively; for example, left| mathbf{A} ight| = A. In classical mechanics, the Laplace–Runge–Lenz vector (or simply the LRL vector) is a vector… … Wikipedia